
INTEGRITY CHECKING IN REMOTE COMPUTATION

Paolo Falcarin1, Riccardo Scandariato1, Mario Baldi1, Yoram Ofek2
1 Politecnico di Torino, Dipartimento di Automatica e Informatica

2 Università di Trento, Dipartimento di Informatica e Telecomunicazioni
{Paolo.Falcarin,Riccardo.Scandariato,Mario.Baldi}@polito.it, Ofek@dit.unitn.it

How can a client-side application be entrusted albeit running inside
an un-trusted environment? Within an un-trusted environment a
possibly malicious user has complete access to system resources
and tools in order to tamper with the application code. Under those
assumptions, the server-side application needs a way to continuously
ascertain that the client code has not been altered prior to and during
execution, i.e., the server is required to continuously entrust the
client. To address this problem, we propose a novel approach based
on the client-side generation of an execution signature, which is
remotely checked by the server, wherein affirmative checking ensure
the authenticity of the client-side software. The method proposed is
applicable to remote computation, in general, and has the potential to
solve some of the central trust problems in GRID computing.

1. Introduction
The level of security and trust offered by present software systems is not
satisfactory, especially considering the strategic role such systems play in
modern economy. Inevitably, the damage to the community caused by insecure
software artifacts has become substantial, as demonstrated by various incidents
in the recent past. The outcome of above-mentioned security threats causes
both monetary losses and a weakened trust in key software systems.

Many circumstances do exist in which it is desirable to protect a software
module from malicious tampering once it gets distributed to a user community
(examples include time-limited evaluation copies of software, password-
protected access to unencrypted software, controlled playback of copyright
protected material, e-voting and e-commerce systems) or even when running
on a server (e.g., systems handling critical information and financial
transactions).

In general, software, especially in the context of data networks, suffers from
some inherent security problems. These include modifications by an either
malicious or inadvertent user, malware distribution (e.g., viruses and “Trojan
horses”), and the use of malicious software for far-flung penetration, intrusion,
and (distributed) denial of service.

This work was supported in part by funds from the European Commission (contract N° 002807)

In particular, this work has been carried out in the context of a research project
aiming at providing an answer to the following question: How can a client
application be entrusted albeit running inside an un-trusted environment?

With the term “un-trusted environment” we mean a computing base (e.g.,
networked computers and mobile devices) in which a possibly malicious user
has complete (conceivably physical) access to system resources (e.g., memory,
disks, and so on) and tools (e.g., debuggers, disassemblers, etc.) in order to
tamper with the application code. In the scope of this paper, an application is
deemed trusted whenever its executed code has not been altered. Getting the
above-mentioned applications to be trusted in such a hostile environment is a
challenging, yet largely un-addressed issue. TrustedFlow [5] is our software
solution methodology to specifically tackle the problem of remotely
authenticating software during execution in order to assure that it is not altered
prior to and during execution.

In our approach, the answer to the above-mentioned problem is achieved by
continuously emanating a flow of idiosyncratic tags from clients to server. The
tags are used as evidence to the server that the client code emanating them is
authentic. The tags flow is generated by a secret function hidden in the to-be-
entrusted software (entrusted entity) and whose execution is subordinated to
the genuine execution of the client software itself. The flow of tags is validated
at a remote component (entrusting entity) that is executed in a trusted
environment. This generation and validation method of idiosyncratic tags is
called TrustedFlow.

Remote entrusting of applications is also an emerging requirement for
distributed computing architectures (e.g.: GRID [7]) where several computation
units are deployed on a large number of remote untrusted platforms. Thus,
malicious tampering with a single computation unit can cause data errors which
compromise the entire distributed computation: this kind of attack can waste the
work of days of GRID computing.

An implementation of TrustedFlow, discussed in this paper, is based on the
deployment and nonstop replacement of dynamic integrity checking modules. In
general, traditional integrity self-checking has the problem of how to make sure
that the self-check is performed. In this implementation, the remote verification
provides a way of verifying that the check has been duly preformed. The
proposed solution can be deployed in scenarios in which access to servers
should be allowed to original client software. Key examples of existing
applications include: Yahoo service access (Yahoo advanced services are
available only to users deploying Yahoo’s client), gambling servers, and on-line
exam tests. Along these lines, a chat system, composed of a server acting as
entrusting entity and a client acting as entrusted entity, has been developed as
a proof of concept.

Next section describes the operating principles of TrustedFlow.

2. Basic TrustedFlow Principles
The TrustedFlow solution has two basic principles.

1. Interlocking describes the combination of the entrusted software
(original function) with an idiosyncratic tag generator, which generates an
unpredictable flow of tags. Interlocking aims at assuring that the
idiosyncratic tag generation is bound in an inseparable manner to the
actual functional code and than can be used as evidence of integrity to
the server.

2. Hiding is the general term describing the necessary countermeasures to
ensure that reverse engineering the tag generator and breaking the
interlocking is difficult enough so that it becomes practically infeasible.

TTGTTG
TTCTTC

Trusted
Computer

Untrusted
Computer

Entrusted software

Flow of Trusted Tags

Trusted Tag Generator (TTG)
creates and emanates the trusted tags

Trusted Tag Checker (TTC)
verifies the trusted tags

Entrusting Entity

Figure 1: TrustedFlow system architecture
During runtime, the following two components, depicted in Figure 1, enact the
TrustedFlow method for remote authentication of software execution.

1. A Trusted Tag Generator (TTG) within the entrusted software
constantly generates a flow of tags, constituting the continuous
idiosyncratic signature (that cannot be forged) of the entrusted software’s
execution, and binds them to traffic generated by the entrusted software.

2. A Trusted Tag Checker (TTC) within an entrusting entity authenticates
the entrusted software by verifying the flow of tags that forms the
continuous idiosyncratic signature emanated by the entrusted software.

For increased robustness, the algorithm used to generate the tags should not
require a strong synchronization between TTC and TTG. For instance, current
implementation uses a block cipher in counter mode and includes the counter
value among the data transmitted between the TTC and the TTG. See
Section 4 for further details.

Moreover, cryptographic functions can be employed to bind tags to transmitted
data. For example, a message authentication code (MAC) of the data unit
including the related tag can be attached by the TTG to protect against the
tampering with the data associated to a valid tag. Alternatively, a MAC
calculation can be part of the tag generation algorithm.

3. Mobility to Build Trust
Our solution to the implementation of TrustedFlow realizes the interlocking
principle by means of a code integrity checker [1] that continuously monitors
code execution and controls the idiosyncratic tag generator. In case the code
integrity checker returns a negative result, generation of the idiosyncratic tag
flow is inhibited. Dynamic checking [4], in which the program is verified
repeatedly at runtime, is preferred rather than static integrity checking, in which
the program integrity is (self) checked only once, during start-up.

To counter reverse engineering, hence implementing the hiding principle,
current integrity checking techniques mostly rely on co-bundled code checkers
whose position is hidden in the application and whose behavior is obfuscated or
complex to understand [2,3].

However, we observe that any technique involving a checker that is
permanently co-bundled within the application is not robust enough. Indeed, the
checker can be eventually identified and inhibited by an attacker with enough
knowledge, time, and reverse engineering tools. Under such conditions, there
are no guarantees that a remote client is actually undergoing to all the checks
he is supposed to.

TTGTTG
Code checkerCode checker

Entrusted softwareEntrusted software

Mobile Entrusting Mobile Entrusting
Module (MEM)Module (MEM)

Periodically
replaced

Figure 2: Mobility for the hiding principle
Our implementation of the hiding principle is based on mobility, possibly
combined with mild obfuscation. As graphically represented in Figure 2, the
checker is bundled as an independent module, called Mobile Entrusting
Module (MEM), which is sent to the client at startup and can be updated
dynamically at any time. The update rate can be tuned according to the security

requirements of the target application domains (from minutes to days).
Nonetheless, anti-tampering techniques, such as obfuscation, are still a
valuable addendum in order to make it even harder for a rogue user to hack the
checker code. A checker that is both mobile and obfuscated gives an additional
degree of freedom to customize the security level: the stronger obfuscation, the
lower the update rate can be, and vice versa.

In summary, when compared to typical integrity checkers, our approach extends
their power in two ways:

1. It adds remote verification that checking has been actually performed.

2. It supports the continuous replacement of the checking code.

4. Proof of Concept
To show the applicability of the proposed approach we developed a prototype
implementation of the remote code verification architecture described in
Section 3. As a “toy” example, we used a chat application composed by a Java
client and a chat server relaying user messages to chat participants. The client
side has been left unmodified. Therefore, once the chat client program is
released and distributed to users, an attacker cannot get any clue about the
integrity strategy the server will adopt.

Concerning the server program, it has been extended to integrate it with the
TrustedFlow server module (TTC, in Section 2).

Client runtime

Chat
Server

auth

update

TagMsg

MEM
Factory

load

Simple
Checker

MEM
Manager

TrustedFlow moduleChat Client

Code
Checker

Tag
Generator

Figure 3. Prototype architecture
As shown in Figure 3 (right-hand side), main components of the TrustedFlow
modules are the MEM Manager, the MEM Factory and the Simple
Checker. MEM Manager provides the Chat Server with the interface to access

TrustedFlow functionalities, namely the registration of a new client and the
verification of tagged messages. It is supported by the Simple Checker, which
validates the tags carried by user messages, and by the MEM Factory, which
dynamically generates the code of the to-be-deployed modules.

In the prototype, the MEM is modularized into two components that can be
independently replaced or modified, making future experimentation and
enhancements easier. As shown in left-hand side of Figure 3, when a new client
comes in, the TrustedFlow module loads the two components in the execution
environment of the upcoming client. They are the Code Checker, which
behaves as a watchdog for the client program and looks for integrity breaches,
and the Tag Generator (TTG in Section 2), which seamlessly append a tag to
each user message.

In our prototype the Code Checker defines a “sandbox”, i.e. a set of methods
and libraries the client application is allowed to use. For instance, an application
profiler can be used to automatically extract the list of called methods by the
client code. Such list is embedded in the Code Checker and it used to enforce
controls over the sandbox boundaries. As soon as the client code trespass the
sandbox limits, the Tag Generator is informed. The Tag Generator intercepts
network transmissions to the chat server in order to obliviously insert tags in the
data sent out by the client application. Valid tags are generated until the Code
Checker certifies the client code is genuine. When the generator is informed of
a sandbox violation, it generates illegal tags that will eventually alert the TTC.

Crypt

Concat

Hash

i

k

m

Concat

m’

t

Figure 4. Tagged message generation
Tags are generated according to the algorithm depicted in Figure 4. Each Tag
Generator has a counter that is incremented each time a new message is sent
out. The Tag Generator also shares a symmetric secret encryption key with the
TTC. Each client has a different key. Furthermore, each key can be changed at
any time by updating the corresponding Tag Generator. Using the secret key

(k), the Tag Generator encrypts the current counter value (i) with the AES block
cipher [66].

The resulting block is concatenated with the plain user message (m) and then
hashed2 to produce the tag (t). The resulting tagged message (m’) is made by
the plain message, the counter value, and the calculated tag.

While the Code Checker is pushed at runtime and never replaced (for
simplicity), the TrustedFlow module automatically updates each Tag Generator
whenever the corresponding user sent out a given amount of messages or the
ageing timer expired (whichever comes first).

5. Conclusions
This paper presented an innovative approach to deal with remote verification or
entrusting of client-side application code. The proposed solution broadens
classic integrity self-checking techniques by both making them more robust
(thanks to mobility), and providing the additional feature of continuous
verification of integrity by a remote (trusted) server. As a positive outcome, the
strategy adopted by the checker is not inferable through static code
observation, i.e. the checker arrives at run-time and it will change periodically
during execution. During runtime, the attacker task is made even harder due to
continuous replacement of the checking strategy.

The paper also presented a workable prototype implementation of the proposed
approach for a chat application. The current prototype was meant as a
demonstrator and, thus, it suffers some limitations. Mainly, the integrity check
technique is quite simplistic as the Java platform does not allow application
access to the code segment, and, hence, code verification techniques cannot
be applied.

Our code checker adopts an anomaly detection technique and can immediately
spot when program is traversing the boundaries of the sandbox. However, this
does not strictly guarantee that the original program has not been altered. More
sophisticated approaches are based on low-level inspection of executed
bytecode, e.g. as to compare the hashed running bytecode with a trusted copy.

The above limitation can be overcomed if the application were implemented in
C++. The mobile module could calculate a keyed hash of the code segment at
runtime. Such technique could detect the change of a single bit in any non-
modifiable part of the program, as the program is running and soon after the
change occurs. This helps in detecting an attack where the program is modified
temporarily and then restored as soon as the malicious behavior took place.

6. References
[1] Falcarin, P., Baldi, M., Mazzocchi, D., 2004, Software Tampering detection using AOP and

mobile code, Workshop on AOSD Technology for Application level security (AOSDSEC),
co-located with AOSD 2004, Lancaster, UK.

2 The algorithm uses a low-collision cryptographic hash function.

[2] Wang, C., Davidson, J., Hill, J., and Knight, J., 2001, Protection of software–based
survivability mechanisms, Proceedings of IEEE/IFIP International Conference on
Dependable Systems and Networks.

[3] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., and Yang,
K., 2001, On the (Im)possibility of Obfuscating Programs, Proceedings of CRYPTO 2001.

[4] Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., and Jakubowski, M., 2002,
Oblivious hashing: Silent Verification of Code Execution, Proceedings of 5th international
workshop on information hiding (IHW 2002), Noordwijkerhout, The Netherlands.

[5] Baldi, M., Ofek, Y., and Young, M., 2003, Idiosyncratic Signatures for Authenticated
Execution of Management Code, Proc. of DSOM 2003.

[6] Daemen, J., and Rijmen, V., 2000, The Block Cipher Rijndael, Smart Card Research and
Applications, LNCS 1820, J.-J. Quisquater and B. Schneier Eds., Springer-Verlag.

[7] The GRID web-site. On-line at http://www.grid.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

