

Abstract

This work addresses the high-rate session scheduling

problem in Fractional Lambda Switching (FλS)
networks. With its global phase synchronization and
pipeline forwarding (PF) operation, FλS offers
promising network performance and scalability over its
competitors, e.g., Time Division Multiplexing (such as
SONET/SDH) and Wavelength Division Multiplexing
(WDM). Yet, Non-Immediate Forwarding (NIF) brings
challenging complexity to session scheduling, where
other known scheduling methods (e.g. RWTA) are not
applicable. A forwarding graph is used to wholly
examine the huge schedule space for an end-to-end
high-rate NIF session. An efficient scheduling
algorithm, eSSM, is proposed to explore all possibilities
on the graph and present the optimized non-blocking
schedule. Complexity bounds are then devised
analytically and experimentally verified under specific
circumstances. A low-complexity heuristic is proposed
to avoid the complexity of eSSM in low-load networks.

1 Introduction
Fractional Lambda Switching (FλS) [1]-[3] can

provide the reliability, fast transport, minimum jitter,
and flexible bandwidth provisioning required in modern
optical networks. FλS switches and forwards data in
temporal units, called Time Frames (TF), on WDM
channels similarly to the well-known TDM-WDM
(Time Division Multiplexing-Wavelength Division
Multiplexing) solutions, such as Time-shared
Wavelength-Routed (WR) networks [4]. However, FλS
deploys global phase synchronization — achieved for
example by using UTC time as provided by GPS to
devise the TF duration — and the pipeline forwarding
(PF) of packets in pre-allocated TFs [1]. These features
improve network performance, reduce the system
complexity and increase scalability. Yet, issues related
the FλS control plane, specifically TF scheduling, need
to be studied.

According to the PF principle, packets are forwarded
in TFs (as “virtual containers”) in a “lock-step” manner

across the route at a predefined scheduled request. PF
can be performed in two modes: (1) immediate
forwarding (IF) or (2) non-immediate forwarding (NIF).
NIF is more interesting as it enables greater flexibility
and higher utilization. Yet, scheduling with NIF is more
challenging due to its huge solution space leading to a
potentially high complexity in finding a solution [7].
There are some existing scheduling results in TDM-
WDM networks for various scenarios (e.g., multi-rate,
online/offline) based on network throughput
optimization [5][6]. However, those scheduling
methods only address scenarios equivalent to the IF
case of FλS where once the scheduling problem has
been solved at one switch, the schedule at any switch on
the route is directly determined.

Scheduling in NIF-FλS for a fixed basic-rate (1-TF)
session was first proposed in [7], where . This paper
addresses the case of a high-rate request of any number
of TFs on a homogeneous single-wavelength optical
network. Section 2 summarizes the FλS principles, the
scheduling model and formulates the problem. Section 3
shows the way to construct a forwarding graph for the
multiple-TF-request scheduling model and proposes an
algorithm, named eSSM (efficient Survivor-based
Search for a Multiple-TF session) to solve the
scheduling problem. Section 0 presents a heuristic to be
used with low network load as in such scenario eSSM
complexity is high. Section 5 discusses a variant of the
scheduling algorithm that avoids out-of-order packet
delivery. Conclusions are drawn in Section 6.

2 Scheduling problem formulation

2.1 Network principle: timing and pipeline
forwarding

Timing: In FλS networks, timing structure is
constructed in a way that multiple time frames (TFs) are
grouped into a time cycle (TC) and multiple TCs are
equal to a standard UTC. The timing and
synchronization is globally provided with UTC systems
(GPS, Gallileo…) [1].

Pipeline-forwarding (PF): the fundamental principle
of FλS networks is that packets are pipeline-forwarded

Scheduling High-Rate Sessions in
Fractional Lambda Switching Networks: Algorithm and Analysis

Thu-Huong Truong∗ , Mario Baldi∗∗, Yoram Ofek∗ IEEE Fellow
∗ University of Trento, Italy - {huong.truong,ofek}@dit.unitn.it

∗∗ Politecnico di Torino, Italy - mario.baldi@polito.it

in TFs with a predefined forwarding schedule that is
responsive to UTC timing and without header
processing. The necessary condition for PF is having
propagation delay as an integer number of TFs [1]. In
order to realize this all incoming TFs should be aligned
with UTC. Without loss of generality, in this work we
assume the availability of this UTC alignment operation
and ignore the propagation delay as well as the
alignment delay.

Figure 1 – Timing structure and pipeline

forwarding
Z-forwarding delay is the delay due to intentionally

holding (buffering) the incoming TF (i.e.: its packets)
for a duration of Z→0 TFs before forwarding to the
next switch on the route. The Z-forwarding has two
cases, as shown in Figure 1:
1. Z=0 – Immediate Forwarding (IF): incoming TFs

are forwarded with zero delay to next switch.
2. K>Z>0 – Non-Immediate Forwarding (NIF):

incoming TFs can be forwarded to next switch with
delay being any from 0 to Z TFs.

NIF obviously increases the possibility to
accommodate more concurrent traffic flows, compared
to using IF, thus reducing blocking probability and
increasing network utilization

TF provision: The scheduling of TFs for traffic flows
is periodical with a cycle, normally a TC, after which a
schedule is repeated . The TFs inside a TC therefore are
the bandwidth units to be provisioned to the sessions.

Figure 2 – Network model for a 2-TF session

2.2 Scheduling problem
2.2.1 Network model:

A scheduling problem is considered for a single high-
rate session on a network route, without dependency on
the topologies of the real networks. The route carries
traffic from Source to Destination via h switches. The
session requires multiple TFs — hereafter called a g-TF
session — in a single-channel, homogeneous FλS

network. Homogeneity means that the same bit rate and
TF structure are deployed on all links.

The scheduling problem is studied (1) on one
predefined route (i.e. route selection completed), (2)
without considering propagation delay and UTC
alignment delay, and (3) allowing TFs of the scheduled
session to be non-contiguous.
2.2.2 g-TF Scheduling Problem Formulation:

Beside the extensively studied blocking problem
[1][2], scheduling in a scenario with requested data rate
of multiple TFs is a complex task due to a huge space of
possible schedules, as analyzed in the following.

Definitions
Available TF - a TF at an output of a switch during

which packets of the requesting flow can be transmitted.

Choice - a set of g available output TFs selected for a
given g-TF bandwidth request at switch j

(){ } j
i

j
kl

j
i

j
k TFlCeiTFC ==)(:.

Where:
j

iTF : Available TF i at switch j (i: 0 K-1,
j:0 h-1)

)(lC j
k : l-th position (l: 0 g-1) in a TF set of kth

choice

A choice is constrained by the rule of valid
compound forwarding:

Valid compound forwarding - a compound
forwarding of data from a choice 1

'
−j

kC to a choice j
kC

is valid iff all its single forwards are valid. A single
forward is valid according to Z-forwarding when

If 1
'
−j

iTF is selected for ()lC j
k

1
'
− ,

Then ()lC j
k can only be a free j

iTF in the range of
[i’, (i’+Z) mod K] (in the same or the next
TC).
 i.e. [] ZKii l ≤− mod' for every l-th position

Schedule - a schedule is a sequence of choices over a
predefined route of multiple switches

{ }KK ,,, '
1

'
j

k
j

k CCS −=

Observation
For Z-forwarding (0<Z<K-1), the total number of

possible schedules (ΣS) for a g-TF flow over an h-hop
route is bounded as:

()
()

() () ())1(
1

1
!

!
!1

!1
!

! −
Σ

−

+⋅
−

<<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+
+

⋅
−

hg
h

z
gK

KS
gZ

Z
gK

K (i)

Proof:

At switch 0: the number of possible choices is equal
to the number of different sets of g TFs, which are
permutations without repetition of g TFs. Therefore,
there are

()!
!

0 gK
KG
−

= choices to forward data to the

next switch.
At switch 1: each of the 0G choices evolves to

1G choices which cannot be greater than ()gZ 1+ nor

smaller than ()
()!1

!1
gZ

Z
−+
+ . We derive that by considering

two border cases.
The upper bound is derived by considering the set of

TFs that can be used to forward from each single TF of
a choice as non overlapping with the TFs that can be
used for forwarding from the other TFs of the choice.
Since packets arriving during each TF can be forwarded
during (Z+1) possible TFs and there are g TFs in a
choice, the total number of possible choices is

() () () ()g

g

up ZZZZG 11...111 +=++⋅+= 4444 34444 21
.

The lower bound is derived assuming maximum
overlap between the TFs that can be used to forward
packets arrived at switch 1 during various TFs of a
choice. Maximum overlap is achieved when the TFs of
a choice are contiguous. There are (Z+1) options for
choosing a forwarding TF for packets arriving during
the first TF of a choice, Z for the second TF, and so on.
Considering the gth TF in the choice, (Z+1-g+1) TFs can
be chosen for forwarding packets. Consequently, the
total number of possible choices at switch 1 in this case
is:

() () ()
()!1

!111...11 gZ
ZgZZZGlow

−+
+

=+−+⋅⋅⋅+=

Choices evolve the same way as in switch 1 at every
subsequent switch on the path. Consequently, the total
number of possible schedules ΣS at the last switch (h-1)
is given by combination of all the single hop possible
choices: uplow SSS << Σ

Where:

()
()

()

1

110 !1
!1

!
!...

−

− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+
+

⋅
−

=⋅⋅⋅=
h

low
h

low
low gZ

Z
gK

KGGGS

() ())1(
110 1

!
!... −

− +⋅
−

=⋅⋅= hgup
h

up
up Z

gK
KGGGS

□

The space of possible schedules ΣS bounded by (i)
grows exponentially with the length of the path h,
which is a limitation for the network scale. Moreover,
also the amount of bandwidth required by a session

(i.e., the number of TFs g to be scheduled)
exponentially affects the size of the solution space.
Therefore, an efficient algorithm is to be devised to
perform scheduling so that the time required to set up a
reservation for a new session an be limited.

3 Scheduling algorithm: design and
complexity analysis

The algorithm proposed in this paper and the analysis
of its complexity are based on a graph that represents all
scheduling possibilities. Consequently, the remainder of
this section is first introducing such graph, then
presenting the algorithm, and finally analyzing its
complexity.

3.1 Forwarding graph construction
A trellis graph is used to represent the scheduling

possibilities by mapping each choice on each link onto a
vertex. The resulting graph is called forwarding graph.
When a single TF schedule is to be found, each vertex
represents one TF at a link [7]. Two arguments are
provided to motivate the way the graph is constructed.

Argument 1
Vertices are permutations without repetition of g

TFs
A schedule is constructed based on a sequence of

choices as defined in Section 2.2.2:
{ }KK ,,, 1

'
j

k
j

k CCS −= . Therefore, vertices of a graph
must be established to cover the choices. According to
the definition of choice:
(1) Each vertex must be a set of g TFs chosen from the

total number of K TFs
(2) Distinct TFs must be assigned within a set, i.e., the

same TF can not appear twice in the set of any
vertex.

From (1) and (2), it is induced that a vertex is a
permutation without repetition of g TFs out of K TFs.

Observation
The order of TFs within a set vertex matters since, as

discussed later, an edge between two vertices represents
a compound forwarding from each of the TFs at the
upstream node to each of TFs in the corresponding
position at the downstream node, as exemplified in
Figure 3.

Argument 2
If vertices at the first switch are combinations

without repetition of g TFs, no redundant schedules
are considered.
If vertices, at all switches, are constructed as

permutations without repetition of g TFs out of K TFs,
more than one resulting schedule might involve the
same TFs at all switches on the path. Figure 3 shows an

example of schedule repetition where schedules S1 and
S2 involve the same TFs at each switch.

1
2
0

5
2
1

0
4
3

At switch 0 1 h-1

0
2
1

1
2
5

3
4
0 S2

S1

Forwarding

Figure 3 – Compound forwarding and

schedule repetition example
Thus, computation complexity gets risk of being

unnecessarily high due to this redundancy phenomenon.
In order to solve the issue, vertices at the first switch are
to be constructed as combination without repetition of g
TFs out of K TFs. The solution stems from the fact that
at the first switch, order of TF objects within a choice
does not matter. The first switch is where forwarding
starts, therefore there is no matter of forwarding from a
previous TF to one of those TFs. Thus, from the two
conditions (1) and (2) in Argument 1, vertices of the first
switch can be constructed as combinations without
repetition instead of permutations without repetition.

Moreover, due to the combination, no vertex of the
first switch has the same set of TF objects. Thus, from
the first switch to the second one, there is no same set of
forwarding as descried above. Thus, no schedule is
repeated over a route.

Vertices and graph construction
Based on the network model in 2.2.1, the forwarding

graph is constructed as follows (see an example in
Figure 4:
- Vertices of stage 0 are combinations without

repetition of g TFs out of K TFs per TC. The total

number of vertices is given:
()!!

!
0 gKg

KN
−

=

- Vertices of the following (h-1) stages presents
permutations without repetition of g TFs,
representing a choice at the output link of switch j:

 (){ }lj
i

j
k TFV =

Where

k: 0 Nj , j: 0 h-1,
i: 0 K-1, l: 0 g-1

The number of vertices at each of those (h-1)
stages:

()!
!

0 gK
KN j −

=≠

Graph component definitions:
Transition: a valid compound forwarding (defined in

2.2.2) between a pair of two available vertices of two
sequential stages

Figure 4 - A forwarding graph example

Transition metric: ()kkb ,'μ - compound forwarding
delay between 2 vertices of 2 consecutive stages.

A transition metric (transition delay) between
vertices

(){ }lj
i

j
k TFV 1

'
1

'
−− = and (){ }lj

i
j

k TFV =
is determined by the maximum of all local metrics

for each pair of local TFs:

() () ()()()KKTFTFkk l
j

il
j

i
gl

l
gl

b modmaxmax,' 1
'00

+−== −

<≤<≤
μμ

Path: a curve P from S to a vertex k-th on stage j -
[]kP

Accumulated path metric: total sum of transition
metric accumulated in a path P to the considered vertex:
µ(P[k])

Survivor: the smallest accumulated-metric path
min(µ(P[k])) among the ones incident to the considered
vertex

Free vertex: a vertex is free if all TF objects within it
are free.

3.2 Scheduling algorithm – eSSM
eSSM (efficient Survivor-based Search for a

Multiple-TF session) algorithm searches for the
smallest-delay schedule selection in a forwarding graph
as described in the previous section. The scheduling
idea is using Path filtration technique to compute stage
by stage until the destination stage is reached.

The technique is elaborated as follows: given the
path metric (accumulated delay) up to every available
vertex of the stage (j-1), the searching algorithm works
on each available vertex of stage j by comparing all path
metrics to it, each consisting of the path metric built up
to an available vertex of stage (j-1) plus the branch
metric from it to the considered vertex of stage j.

Figure 5 – eSSM example

For each available vertex of stage j, all those possible
new paths coming to it are compared based on the
overall path metric (i.e., the accumulated delay up to
stage j -1 plus the forwarding delay corresponding to
the selected branch) and only one best accumulated
path, namely survivor, is kept for that vertex. This
reflects the idea of searching for the smallest
schedulable end-to-end forwarding delay, i.e.,
guaranteed quality of service. At the last stage, multiple
survivor paths , for available vertices respectively,
would be available. The last comparison now among
those survivors yields a final survivor schedule.

Path Filtration

First of all, eSSM uses the function Valid-Transition-
Verification to check if a transition between 2 vertices
exists. Assume that:

(){ }lj
i

j
k TFV 1

'
1

'
−− = and (){ }lj

i
j

k TFV =

The algorithm then uses the technique of Path

Filtration. At each stage j ∈ transition graph, a
minimized set of paths (a set of survivors) is selected by
path filtration.

P is a set of survivors, each corresponds to a vertex
k’ at stage j-1, P[k’]=NIL means vertex k’ has no
survivor (no scheduling possible via k’). P’ is a newly
computed survivor set at j. After all loops for each
vertex, a set of survivors is determined for stage j, and
ready for path filtration at stage j+1. Every path is a
sequence of vertices on consecutive stages (one vertex
at each stage) representing a flow schedule, with path
metric µ(P[k]) being the end-to-end delay of the flow.

Step 1 and 3 show that only vertices which are free and
reachable from previous vertices are considered in
computation. Those vertices are called involved
vertices as they are involved in algorithm computation.
Considering only involved vertices help reducing the
complexity as load increases.

Due to using the path filtration technique, eSSM
inherits the optimality of eSS [7] in capable of yielding
the same result as the exhaustive search does but with
much lower complexity. eSSM can optimally cover all
possibilities of finding all possibilities of assigning one
TF or multiple TFs at each switch if a vertex presents a
TF, or a group of multiple TFs respectively.

3.3 Complexity analysis
Algorithm complexity is defined as the number of

computation iteration with which the algorithm has to
go through, i.e. the number of transitions summing up
from the ones incident to each vertex. Due to the Path
Filtration technique, each previous vertex keeps only
one path to advance further in eSSM. Thus, the
transitions incident to each vertex is computed by
counting the number of previous vertices that can transit
to a current vertex.
3.3.1 Load = 0 or all K TFs are available

Note that due to the symmetry, the number of
incident transitions is equal to the number of outgoing
transitions for a vertex. Here we assess the lower- and
upper- bound of the number of outgoing transitions of a
vertex.

Lower bound: when distance between any 2 TFs of a
vertex are assumed to be smaller than Z.

()
()!1

!1
gZ

ZTLOW −+
+

= if Zdi ≤∀ , Zg ≤ (1)

Proof:
Each TF of a vertex has Z+1 single transitions. If the

TFs are closer to each other then their transition spaces
overlap more onto the other, leading to less compound
transitions can be made. The lower bound happens
when all g TFs of the vertex are continuous, and with

PATH-FILTRATION (j,Nj)
1. For each free vertex k ∈ stage j - j

kV (k: 0 Nj)

2. INFk =μ
3. For each survivor [] PkP ∈'
4. If transition ()j

k
j

k VV ,1
'
− = 1

5. () () ()()()KKTFTFkk l
j

il
j

i
gl

b modmax,' 1
'0

+−= −

<≤
μ

6. If []() () kb kkkP μμμ <+ ,''
7. []() ()kkkP bk ,'' μμμ +=
8. 'kc =
9. Assign [] []{ }kcPkP ,' ←

VALID-TRANSITION-VERIFICATION (j, 1
'
−j

kV , j
kV , Z)

1. If vertices 1
'
−j

kV and j
kV are both free

2. For l = 0:g-1
3. If () ()[] ZKTFTF l

j
il

j
i ≤− − mod1

'
4. Transition ()j

k
j

k VV ,1
'
− 1

maximum overlap of single transitions among g TFs,
i.e. when Z+1 > g.

We can derive the lower bound in that case by
combining single transition possibilities:
 The 1st TF position of a vertex has (Z+1) possibilities
of single transitions. The 2nd position has at least Z
possibilities of TF to transit to after excluding the one
for the 1st position.

 So on, the g-th TF position has at least [(Z+1)-g+1]
possibilities
 A minimum number of transitions to a vertex are

given:

() () ()
()!1

!111...1
gZ

ZgZZZTLOW −+
+

=+−+⋅⋅+=

Upper bound: when all distances between any 2 TFs
of a vertex are assumed to be larger than the Z.

()g
UP ZT 1+= if Zdi >∀ (2)

 Proof:
Thanks to the assumed condition, Z+1 single

transitions of a TF do not overlap with any single
transition of other TFs in that same vertex. Compound
transitions are maximized as combinations of all g
positions, each selected independently from Z+1 units.
Thus, the maximum number of transitions for a vertex
is:

() () () ()g

g

UP ZZZZT 11....11 +=++⋅+= 4444 34444 21

Complexity bounds: Since every of jN vertices of
switch j>0 has the same upper and lower bound (1) (2)
(for j=0, only one transition for each vertex), the
complexity of eSSM over the route of h switches is
given by:

() ∑∑∑
−

=

−

=

−

=

−+==
1

0
0

1

0

1

0

)1(,,,
jj N

i
i

h

j

N

i
i ThNTgZKhX (3)

Where

()!!
!

0 gKg
KN
−

= ;
()!

!
0 gK

KN j −
=≠

()UPLOWi TTT :=
From (3), it can be concluded that the complexity is

linear in the size of h, and exponential in the size of K
and Z –O(h,Kg,Zg). Although the proposed algorithm is
optimal solution in the sense of guaranteeing finding at
least a schedule as long as a schedule exists (proved in
[7]), the complexity is a considerable issue as the value
g increases.
3.3.2 Load = B

In this section, the algorithm complexity is analyzed
for a network load with B busy TFs per TC. The
analysis is done by simulation of the eSSM, in which B
busy TFs are uniformly distributed over each stage.

Study of complexity in scenarios with load, especially
high load is necessary due to its reality. Load helps ease
the eSSM computation since the number of involved
vertices in computation can be much less. Figure 6
illustrates a general changing behavior of complexity
under load influence. The complexity is reduced in an
exponential manner as load increases

Figure 6 – Complexity ratio of different Loads

vs. Load=0

4 Heuristic algorithm

4.1 Algorithm description
The behavior presented in Figure 6 gives us a hint

that under a certain load threshold in a network
scenario, a heuristic algorithm is efficient enough to
replace eSSM. In fact, the eSSM is proved to be optimal
in terms of guaranteeing finding a schedule if at least
one schedule exists in the system. Therefore, eSSM
should be used in the high load circumstance when
finding a schedule is much more difficult because the
existence of schedules is scare, while the complexity
gets smaller. In case of low load, a heuristic algorithm is
helpful with low complexity, while possibility of
finding a schedule is high since resource is plentifully
available.

We propose a heuristic algorithm that exploits the
algorithm eSS [7] with the same core idea of using Path
filtration technique. Unlike eSSM, eSS uses the simple
forwarding graph with one TF per vertex to find single-
TF flow each path. The simple forwarding graph
includes h stages, each stage consisting K vertices
standing for K TFs per TC. While at the end of eSS we
select one best path from survivors of the last stage,
now we need at best g survivors for the g-TF session.
The problem is any pair of those g survivors must not
contain any similar j

iTF . Survivors without that
overlapping are called unshared paths (usp), and a
maximum set of usp is called Susp. To retrieve unshared

paths, we observe a property from the transition graph
and its important corollary:

PathShare property: There are no two survivors
joining to each other, but only splitting from a common
path root from the first hop.

Corollary: The size of a Susp equals to the number of
root TFs (TF at first hop) presented in the last stage’s
survivor paths.

The proof is easy considering the fact that eSSM
keeps only one path per vertex on each stages, giving
the survivor paths a tree-like model. As a result, it is not
hard to build a function to check the overlapping
vectors (paths) and to find a Susp by browsing at the root
TFs, which we implemented but will not present here
for shortness of the paper.

The heuristic method can be described briefly as: run
eSS, find Susp , check if Susp satisfies g-TF session, if not,
add those Susp to the schedule list, reserve (mark busy)
all TFs of Susp on the graph, and repeat from the
beginning (run eSS with the new graph …) until the
schedule list has enough g survivors.

This algorithm is heuristic in the sense that it
considers the multi-TF requirement only at the last stage
of eSS and if the unshared set of survivors is not
enough for the g-TF, the eSS needs to run again with
the smaller graph. Due to its sequential eSS execution,
it does not ensure the optimality of scheduling multi-TF
as in the eSSM. However, the heuristic is practically
useful and good enough, since the real systems have
large enough capacity compared to a session bandwidth,
i.e. K >> g. When with low load, the chance of having
large m and finding schedules is high, and the algorithm
converges fast enough. After many sessions, when
system gets busier, the eSSM can be efficiently applied
as in 3.2

4.2 Complexity analysis
Its complexity, based on eSS, is as low as in the

single TF schedule. The heuristic is quite efficient in
terms of complexity compared to eSSM, with linear
complexity in every size. Provided finding all g TFs
needed for the session after v repetitions, the complexity
of the heuristic is obviously v times as high as the
complexity of the eSS [7]:

 X(h,K,Z,g) = v·(h-1)·K·(Z+1) where 1 ≤ v ≤ g

Figure 7 illustrates a simulation-based comparison
between complexities of the heuristic and eSSM in a
scenario: h=10, K=20, g=3, Z=10 and at least a schedule
is found. The complexity of eSSM is 32 thousand times
as high as the one of the heuristic at load 0% and ~ 230
times higher at load 65%.

Conclusively, for this scenario, load of ~70% can be
a proper threshold to switch between two scheduling
strategies: eSSM is used if load is higher than 70% and
heuristic is used otherwise. This provides an
experimental policy of load thresholds the network
operator can use to apply suitable algorithms.

Figure 7 – complexity of eSSM vs. Heuristic

5 Scheduling policy towards packet order
Although IP networks do not assure that packets

arrive to the destination in the same order in which they
were sent, out-of-order packets can cause performance
problems to many applications and higher layer
protocols. Moreover, out-of-order packets cause
additional delay in streaming media and interactive
media applications, such as HDTV, Teleconferencing,
Video-on-demand, Distance Learning, Telemedicine.

eSSM may decide a out-of-ordered schedule where
TFs go out earlier from Source arrive later at
Destination. It is because, with the graph and Path
Filtration in eSSM, the algorithm is blind to the order
requirement, and just selects schedules based on the
vertex availability and delay optimizing. As far as we

Heuristic(g,Z,K,h)

Initiate: number of remaining schedules: r = g

1. Run eSS(Z,K,h), find s survivors at the last
stage;

2. If s < r
P=Exit, failure: “not enough TF, use less or
try later”;

3. If s ≥ r, Identify a Susp with m = size(Susp)
4. If m ≥ r
 P (pick r best-delay paths from Susp);

Exit, success. P is the schedule list
5. If m < r
 P Susp ; r = r – m ;
6. If size(P) < g

 Mark TFs in Susp as busy in the graph;
 Repeat from step 1

have studied, the exhaustive search is the only
algorithm that can evaluate all possibilities of in-order
schedules at the expense of extremely high complexity.
Thus, in order to trade off among criteria of appropriate
complexity and efficient search for in-order delivery,
we have eSSM modified in a way that it consistently
searches over only ordered schedules. The solution is to
run eSSM in a graph built up by only vertices that
satisfy the increasing order of TFs. Thus, all choices of
the schedule until the Destination have the same
increasing order, as in the Source. The same eSSM idea
can then perform on the new graph. Vertices are
involved in the in-order graph as follows:
- 0

kV are combinations of g out of K TFs, in which the g
TFs are sorted in increasing order, e.g. ()9,5,10 =kV

-
h

kV (h ≠ 0) for the in-order graph are selected from
the vertices in eSSM graph if they contain TFs in
increasing order within 2 time cycles. They are

exactly the
0

kV ones plus the cyclic-shift versions of
0

kV ones, e.g. (2,3,1), (3,1,2).

6 Discussion
The exponential-like processing time with huge
schedule space make scheduling for a multiple TF
context a complex problem with many open issues. Our
solution provides method to do that efficiently with
some heuristics in practical scenarios. It is also a first
step to further open the FλS network scheduling to
various areas, e.g.: for a set of diverse session, for
WDM (multiple channels), or with multicast, For all
that, our eSSM application continues to looks possible
with suitable modifications in future works.

References
[1] M. Baldi and Y. Ofek, "Fractional Lambda Switching -

Principles of Operation and Performance Issues",
SIMULATION: Transactions of The Society for Modeling and
Simulation International, Vol. 80, No. 10, Oct. 2004, pp. 527-
544.

[2] D. Grieco, A. Pattavina and Y. Ofek, "Fractional Lambda
Switching for Flexible Bandwidth Provisioning in WDM
Networks: Principles and Performance", Photonic Network
Communications, Issue: Volume 9, Number 3, Date: May
2005, Pages: 281 – 296.

[3] V. T. Nguyen, et al, "Design and Analysis of Tunable Laser-
based Fractional Lambda Switching," IEEE INFOCOM 2006.

[4] N.F. Huang, G.H Liaw, C.P Wang, “A Novel All Optical
Transport Network with Time Shared Wavelength Channels”,
IEEE Journals on selected areas in communications, Vol.18,
No.10, October 2000.

[5] Suresh Subramaniam, et al, “Scheduling Multirate Sessions in
Time Division Multiplexed Wavelength Routing Networks”,
IEEE Journal on Selected Areas in Communications, vol.18,
no.10, October 2000

[6] Bowen, Ramakrishna Shenai, and Krishna Sivalingam,
“Routing, Wavelength and Time-Slot-Assignment Algorithms
for Wavelength-Routed Optical WDM/TDM Networks”,
Journals of Lightwave Technology, Vol.23, No.9, September
2005.

[7] Thu-Huong Truong, Mario Baldi, Yoram Ofek, “An Efficient
Scheduling Algorithm for Time-Driven Switching Networks”,
IEEE LANMAN 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 64000
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 64000
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 64000
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

