
 

Abstract 
 
This work addresses the high-rate session scheduling 

problem in Fractional Lambda Switching (FλS) 
networks. With its global phase synchronization and 
pipeline forwarding (PF) operation, FλS offers 
promising network performance and scalability over its 
competitors, e.g., Time Division Multiplexing (such as 
SONET/SDH) and Wavelength Division Multiplexing 
(WDM). Yet, Non-Immediate Forwarding (NIF) brings 
challenging complexity to session scheduling, where 
other known scheduling methods (e.g. RWTA) are not 
applicable. A forwarding graph is used to wholly 
examine the huge schedule space for an end-to-end 
high-rate NIF session. An efficient scheduling 
algorithm, eSSM, is proposed to explore all possibilities 
on the graph and present the optimized non-blocking 
schedule. Complexity bounds are then devised 
analytically and experimentally verified under specific 
circumstances. A low-complexity heuristic is proposed 
to avoid the complexity of eSSM in low-load networks. 

1 Introduction 
Fractional Lambda Switching (FλS) [1]-[3] can 

provide the reliability, fast transport, minimum jitter, 
and flexible bandwidth provisioning required in modern 
optical networks. FλS switches and forwards data in 
temporal units, called Time Frames (TF), on WDM 
channels similarly to the well-known TDM-WDM 
(Time Division Multiplexing-Wavelength Division 
Multiplexing) solutions, such as Time-shared 
Wavelength-Routed (WR) networks [4]. However, FλS 
deploys global phase synchronization — achieved for 
example by using UTC time as provided by GPS to 
devise the TF duration — and the pipeline forwarding 
(PF) of packets in pre-allocated TFs [1]. These features 
improve network performance, reduce the system 
complexity and increase scalability. Yet, issues related 
the FλS control plane, specifically TF scheduling, need 
to be studied.  

According to the PF principle, packets are forwarded 
in TFs (as “virtual containers”) in a “lock-step” manner 

across the route at a predefined scheduled request. PF 
can be performed in two modes: (1) immediate 
forwarding (IF) or (2) non-immediate forwarding (NIF). 
NIF is more interesting as it enables greater flexibility 
and higher utilization. Yet, scheduling with NIF is more 
challenging due to its huge solution space leading to a 
potentially high complexity in finding a solution [7]. 
There are some existing scheduling results in TDM-
WDM networks for various scenarios (e.g., multi-rate, 
online/offline) based on network throughput 
optimization [5][6]. However, those scheduling 
methods only address scenarios equivalent to the IF 
case of FλS where once the scheduling problem has 
been solved at one switch, the schedule at any switch on 
the route is directly determined.  

Scheduling in NIF-FλS for a fixed basic-rate (1-TF) 
session was first proposed in [7], where . This paper 
addresses the case of a high-rate request of any number 
of TFs on a homogeneous single-wavelength optical 
network. Section 2 summarizes the FλS principles, the 
scheduling model and formulates the problem. Section 3 
shows the way to construct a forwarding graph for the 
multiple-TF-request scheduling model and proposes an 
algorithm, named eSSM (efficient Survivor-based 
Search for a Multiple-TF session) to solve the 
scheduling problem.  Section 0 presents a heuristic to be 
used with low network load as in such scenario eSSM 
complexity is high. Section 5 discusses a variant of the 
scheduling algorithm that avoids out-of-order packet 
delivery. Conclusions are drawn in Section 6. 

2 Scheduling problem formulation  

2.1 Network principle: timing and pipeline 
forwarding 

Timing: In FλS networks, timing structure is 
constructed in a way that multiple time frames (TFs) are 
grouped into a time cycle (TC) and multiple TCs are 
equal to a standard UTC. The timing and 
synchronization is globally provided with UTC systems 
(GPS, Gallileo…) [1].  

Pipeline-forwarding (PF): the fundamental principle 
of FλS networks is that packets are pipeline-forwarded 

Scheduling High-Rate Sessions in  
Fractional Lambda Switching Networks: Algorithm and Analysis  

Thu-Huong Truong∗ , Mario Baldi∗∗, Yoram Ofek∗ IEEE Fellow 
∗ University of Trento, Italy - {huong.truong,ofek}@dit.unitn.it 

∗∗ Politecnico di Torino, Italy - mario.baldi@polito.it 



 

in TFs with a predefined forwarding schedule that is 
responsive to UTC timing and without header 
processing. The necessary condition for PF is having 
propagation delay as an integer number of TFs [1]. In 
order to realize this all incoming TFs should be aligned 
with UTC. Without loss of generality, in this work we 
assume the availability of this UTC alignment operation 
and ignore the propagation delay as well as the 
alignment delay.  

 
Figure 1 – Timing structure and pipeline 

forwarding 
Z-forwarding delay is the delay due to intentionally 

holding (buffering) the incoming TF (i.e.: its packets) 
for a duration of Z→0  TFs before forwarding to the 
next switch on the route. The Z-forwarding has two 
cases, as shown in Figure 1: 
1.   Z=0 – Immediate Forwarding (IF): incoming TFs 

are forwarded with zero delay to  next switch. 
2.   K>Z>0 – Non-Immediate Forwarding (NIF): 

incoming TFs can be forwarded to next switch with 
delay being any from 0 to Z TFs. 

NIF obviously increases the possibility to 
accommodate more concurrent traffic flows, compared 
to using IF, thus reducing blocking probability and 
increasing network utilization 

TF provision: The scheduling of TFs for traffic flows 
is periodical with a cycle, normally a TC, after which  a 
schedule is repeated . The TFs inside a TC therefore are 
the bandwidth units to be provisioned to the sessions. 

 
Figure 2 – Network model for a 2-TF session 

2.2 Scheduling problem 
2.2.1 Network model: 

A scheduling problem is considered for a single high-
rate session on a network route, without dependency on 
the topologies of the real networks. The route carries 
traffic from Source to Destination via h switches. The 
session requires multiple TFs — hereafter called a g-TF 
session — in a single-channel, homogeneous FλS 

network. Homogeneity means that the same bit rate and 
TF structure are deployed on all links. 

The scheduling problem is studied (1) on one 
predefined route (i.e. route selection completed), (2) 
without considering propagation delay and UTC 
alignment delay, and (3) allowing TFs of the scheduled 
session to be non-contiguous. 
2.2.2 g-TF Scheduling Problem Formulation: 

Beside the extensively studied blocking problem 
[1][2], scheduling in a scenario with requested data rate 
of multiple TFs is a complex task due to a huge space of 
possible schedules, as analyzed in the following. 

Definitions 
Available TF - a TF at an output of a switch during 

which packets of the requesting flow can be transmitted. 

Choice - a set of g available output TFs selected for a 
given g-TF bandwidth request at switch j  
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iTF   : Available TF i at switch j (i: 0 K-1, 
j:0 h-1) 
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choice 

A choice is constrained by the rule of valid 
compound forwarding: 

Valid compound forwarding - a compound 
forwarding of data from a choice 1
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Schedule - a schedule is a sequence of choices over a 
predefined route of multiple switches 
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Observation 
For Z-forwarding (0<Z<K-1), the total number of 

possible schedules ( ΣS ) for a g-TF flow over an h-hop 
route is bounded as:  

( )
( )

( ) ( ) ( ) )1(
1

1
!

!
!1

!1
!

! −
Σ

−

+⋅
−

<<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+
+

⋅
−

hg
h

z
gK

KS
gZ

Z
gK

K  (i) 

Proof:  



 

At switch 0: the number of possible choices is equal 
to the number of different sets of g TFs, which are 
permutations without repetition of g TFs. Therefore, 
there are 
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=  choices to forward data to the 

next switch. 
At switch 1: each of the 0G  choices evolves to 

1G choices which cannot be greater than ( )gZ 1+ nor 

smaller than ( )
( )!1

!1
gZ

Z
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+ . We derive that by considering 

two border cases. 
The upper bound is derived by considering the set of 

TFs that can be used to forward from each single TF of 
a choice as non overlapping with the TFs that can be 
used for forwarding from the other TFs of the choice. 
Since packets arriving during each TF can be forwarded 
during (Z+1) possible TFs and there are g TFs in a 
choice, the total number of possible choices is 
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The lower bound is derived assuming maximum 
overlap between the TFs that can be used to forward 
packets arrived at switch 1 during various TFs of a 
choice. Maximum overlap is achieved when the TFs of 
a choice are contiguous. There are (Z+1) options for 
choosing a forwarding TF for packets arriving during 
the first TF of a choice, Z for the second TF, and so on. 
Considering the gth TF in the choice, (Z+1-g+1) TFs can 
be chosen for forwarding packets. Consequently, the 
total number of possible choices at switch 1 in this case 
is: 
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Choices evolve the same way as in switch 1 at every 
subsequent switch on the path. Consequently, the total 
number of possible schedules ΣS at the last switch (h-1) 
is given by combination of all the single hop possible 
choices: uplow SSS << Σ
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The space of possible schedules ΣS  bounded by (i) 
grows exponentially with the length of the path h, 
which is a limitation for the network scale. Moreover, 
also the amount of bandwidth required by a session 

(i.e., the number of TFs g to be scheduled) 
exponentially affects the size of the solution space. 
Therefore, an efficient algorithm is to be devised to 
perform scheduling so that the time required to set up a 
reservation for a new session an be limited.  

3 Scheduling algorithm: design and 
complexity analysis 

The algorithm proposed in this paper and the analysis 
of its complexity are based on a graph that represents all 
scheduling possibilities. Consequently, the remainder of 
this section is first introducing such graph, then 
presenting the algorithm, and finally analyzing its 
complexity. 

3.1 Forwarding graph construction 
A trellis graph is used to represent the scheduling 

possibilities by mapping each choice on each link onto a 
vertex. The resulting graph is called forwarding graph. 
When a single TF schedule is to be found, each vertex 
represents one TF at a link  [7]. Two arguments are 
provided to motivate the way the graph is constructed. 

Argument 1 
Vertices are permutations without repetition of g 

TFs 
A schedule is constructed based on a sequence of 

choices as defined in Section 2.2.2: 
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k CCS −= . Therefore, vertices of a graph 
must be established to cover the choices. According to 
the definition of choice: 
(1) Each vertex must be a set of g TFs chosen from the 

total number of K TFs 
(2) Distinct TFs must be assigned within a set, i.e., the 

same TF can not appear twice in the set of any 
vertex. 

From (1) and (2), it is induced that a vertex is a 
permutation without repetition of g TFs out of K TFs.  

Observation 
The order of TFs within a set vertex matters since, as 

discussed later, an edge between two vertices represents 
a compound forwarding from each of the TFs at the  
upstream node to each of TFs in the corresponding 
position at the downstream node, as exemplified in 
Figure 3.  

Argument 2 
If vertices at the first switch are combinations 

without repetition of g TFs, no redundant schedules 
are considered. 
If vertices, at all switches, are constructed as 

permutations without repetition of g TFs out of K TFs, 
more than one resulting schedule might involve the 
same TFs at all switches on the path. Figure 3 shows an 



 

example of schedule repetition where schedules S1 and 
S2 involve the same TFs at each switch. 
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Figure 3 – Compound forwarding and 

schedule repetition example 
Thus, computation complexity gets risk of being 

unnecessarily high due to this redundancy phenomenon. 
In order to solve the issue, vertices at the first switch are 
to be constructed as combination without repetition of g 
TFs out of K TFs. The solution stems from the fact that 
at the first switch, order of TF objects within a choice 
does not matter. The first switch is where forwarding 
starts, therefore there is no matter of forwarding from a 
previous TF to one of those TFs. Thus, from the two 
conditions (1) and (2) in Argument 1, vertices of the first 
switch can be constructed as combinations without 
repetition instead of permutations without repetition.  

Moreover, due to the combination, no vertex of the 
first switch has the same set of TF objects. Thus, from 
the first switch to the second one, there is no same set of 
forwarding as descried above. Thus, no schedule is 
repeated over a route. 

Vertices and graph construction 
Based on the network model in 2.2.1, the forwarding 

graph is constructed as follows (see an example in 
Figure 4: 
- Vertices of stage 0 are combinations without 

repetition of g TFs out of K TFs per TC. The total 

number of vertices is given: 
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- Vertices of the following (h-1) stages presents 
permutations without repetition of g TFs, 
representing a choice at the output link of switch j:  
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Where 

k: 0  Nj   , j: 0  h-1,  
i: 0  K-1, l: 0  g-1 

The number of vertices at each of those (h-1) 
stages: 
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Graph component definitions: 
Transition: a valid compound forwarding (defined in 

2.2.2) between a pair of two available vertices of two 
sequential stages  

 
Figure 4 - A forwarding graph example 

Transition metric: ( )kkb ,'μ  - compound forwarding 
delay between 2 vertices of 2 consecutive stages. 

A transition metric (transition delay) between 
vertices  
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is determined by the maximum of all local metrics 

for each pair of local TFs:  
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Path: a curve P from S to a vertex k-th on stage j - 
[ ]kP  

Accumulated path metric: total sum of transition 
metric accumulated in a path P to the considered vertex: 
µ(P[k])  

Survivor: the smallest accumulated-metric path 
min(µ(P[k])) among the ones incident to the considered 
vertex 

Free vertex: a vertex is free if all TF objects within it 
are free. 

3.2 Scheduling algorithm – eSSM 
eSSM (efficient Survivor-based Search for a 

Multiple-TF session) algorithm searches for the 
smallest-delay schedule selection in a forwarding graph 
as described in the previous section. The scheduling 
idea is using Path filtration technique to compute stage 
by stage until the destination stage is reached. 

The technique is elaborated as follows: given the 
path metric (accumulated delay) up to every available 
vertex of the stage (j-1), the searching algorithm works 
on each available vertex of stage j by comparing all path 
metrics to it, each consisting of the path metric built up 
to an available vertex of stage (j-1) plus the branch 
metric from it to the considered vertex of stage j. 



 

 
Figure 5 – eSSM example 

For each available vertex of stage j, all those possible 
new paths coming to it are compared based on the 
overall path metric (i.e., the accumulated delay up to 
stage j -1 plus the forwarding delay corresponding to 
the selected branch) and only one best accumulated 
path, namely survivor, is kept for that vertex. This 
reflects the idea of searching for the smallest 
schedulable end-to-end forwarding delay, i.e., 
guaranteed quality of service. At the last stage, multiple 
survivor paths , for available vertices respectively, 
would be available. The last comparison now among 
those survivors yields a final survivor schedule. 

Path Filtration 

First of all, eSSM uses the function Valid-Transition-
Verification to check if a transition between 2 vertices 
exists. Assume that: 
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The algorithm then uses the technique of Path 

Filtration. At each stage j ∈ transition graph, a 
minimized set of paths (a set of survivors) is selected by 
path filtration.  

P is a set of survivors, each corresponds to a vertex 
k’ at stage j-1, P[k’]=NIL means vertex k’ has no 
survivor (no scheduling possible via k’). P’ is a newly 
computed survivor set at j. After all loops for each 
vertex, a set of survivors is determined for stage j, and 
ready for path filtration at stage j+1. Every path is a 
sequence of vertices on consecutive stages (one vertex 
at each stage) representing a flow schedule, with path 
metric µ(P[k]) being the end-to-end delay of the flow.  

Step 1 and 3 show that only vertices which are free and 
reachable from previous vertices are considered in 
computation. Those vertices are called involved 
vertices as they are involved in algorithm computation. 
Considering only involved vertices help reducing the 
complexity as load increases. 

Due to using the path filtration technique, eSSM 
inherits the optimality of eSS [7] in capable of yielding 
the same result as the exhaustive search does but with 
much lower complexity. eSSM can optimally cover all 
possibilities of finding all possibilities of assigning one 
TF or multiple TFs at each switch if a vertex presents a 
TF, or a group of multiple TFs respectively.  

3.3 Complexity analysis 
Algorithm complexity is defined as the number of   

computation iteration with which the algorithm has to 
go through, i.e. the number of transitions summing up 
from the ones incident to each vertex. Due to the Path 
Filtration technique, each previous vertex keeps only 
one path to advance further in eSSM. Thus, the 
transitions incident to each vertex is computed by 
counting the number of previous vertices that can transit 
to a current vertex. 
3.3.1 Load = 0 or all K TFs are available 

Note that due to the symmetry, the number of 
incident transitions is equal to the number of outgoing 
transitions for a vertex. Here we assess the lower- and 
upper- bound of the number of outgoing transitions of a 
vertex. 

Lower bound: when distance between any 2 TFs of a 
vertex are assumed to be smaller than Z.   
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Proof:  
Each TF of a vertex has Z+1 single transitions. If the 

TFs are closer to each other then their transition spaces 
overlap more onto the other, leading to less compound 
transitions can be made. The lower bound happens 
when all g TFs of the vertex are continuous, and with 
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maximum overlap of single transitions among g TFs, 
i.e. when Z+1 > g. 

We can derive the lower bound in that case by 
combining single transition possibilities:  
 The 1st TF position of a vertex has (Z+1) possibilities 
of single transitions.  The 2nd position has at least Z 
possibilities of TF to transit to after excluding the one 
for the 1st position. 

 So on, the g-th TF position has at least [(Z+1)-g+1] 
possibilities  
 A minimum number of transitions to a vertex are 

given: 
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Upper bound: when all distances between any 2 TFs 
of a vertex are assumed to be larger than the Z.  

( )g
UP ZT 1+=     if Zdi >∀       (2)

 Proof: 
Thanks to the assumed condition, Z+1 single 

transitions  of a TF do not overlap with any single 
transition of other TFs in that same vertex. Compound 
transitions are maximized as combinations of all g 
positions, each selected independently from Z+1 units. 
Thus, the maximum number of transitions for a vertex 
is:   
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Complexity bounds: Since every of jN  vertices of 
switch j>0 has the same upper and lower bound (1) (2) 
(for j=0, only one transition for each vertex), the 
complexity of eSSM over the route of h switches is 
given by: 
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From (3), it can be concluded that the complexity is 

linear in the size of h, and exponential in the size of K 
and Z –O(h,Kg,Zg). Although the proposed algorithm is 
optimal solution in the sense of guaranteeing finding at 
least a schedule as long as a schedule exists (proved in 
[7]), the complexity is a considerable issue as the value 
g increases.  
3.3.2 Load = B 

In this section, the algorithm complexity is analyzed 
for a network load with B busy TFs per TC. The 
analysis is done by simulation of the eSSM, in which B 
busy TFs are uniformly distributed over each stage. 

Study of complexity in scenarios with load, especially 
high load is necessary due to its reality. Load helps ease 
the eSSM computation since the number of involved 
vertices in computation can be much less. Figure 6 
illustrates a general changing behavior of complexity 
under load influence. The complexity is reduced in an 
exponential manner as load increases 

 
Figure 6 – Complexity ratio of different Loads 

vs. Load=0 

4 Heuristic algorithm 

4.1 Algorithm description 
The behavior presented in Figure 6 gives us a hint 

that under a certain load threshold in a network 
scenario, a heuristic algorithm is efficient enough to 
replace eSSM. In fact, the eSSM is proved to be optimal 
in terms of guaranteeing finding a schedule if at least 
one schedule exists in the system. Therefore, eSSM 
should be used in the high load circumstance when 
finding a schedule is much more difficult because the 
existence of schedules is scare, while the complexity 
gets smaller. In case of low load, a heuristic algorithm is 
helpful with low complexity, while possibility of 
finding a schedule is high since resource is plentifully 
available. 

We propose a heuristic algorithm that exploits the 
algorithm eSS [7] with the same core idea of using Path 
filtration technique. Unlike eSSM, eSS uses the simple 
forwarding graph with one TF per vertex to find single-
TF flow each path. The simple forwarding graph 
includes h stages, each stage consisting K vertices 
standing for K TFs per TC. While at the end of eSS we 
select one best path from survivors of the last stage, 
now we need at best g survivors for the g-TF session. 
The problem is any pair of those g survivors must not 
contain any similar j

iTF . Survivors without that 
overlapping are called unshared paths (usp), and a 
maximum set of usp is called Susp. To retrieve unshared 



 

paths, we observe a property from the transition graph 
and its important corollary: 

PathShare property: There are no two survivors 
joining to each other, but only splitting from a common 
path root from the first hop.  

Corollary: The size of a Susp equals to the number of 
root TFs (TF at first hop) presented in the last stage’s 
survivor paths. 

The proof is easy considering the fact that eSSM 
keeps only one path per vertex on each stages, giving 
the survivor paths a tree-like model. As a result, it is not 
hard to build a function to check the overlapping 
vectors (paths) and to find a Susp by browsing at the root 
TFs, which we implemented but will not present here 
for shortness of the paper. 

The heuristic method can be described briefly as:  run 
eSS, find Susp , check if Susp satisfies g-TF session, if not, 
add those Susp to the schedule list, reserve (mark busy) 
all TFs of Susp on the graph, and repeat from the 
beginning (run eSS with the new graph …) until the 
schedule list has enough g survivors. 

This algorithm is heuristic in the sense that it 
considers the multi-TF requirement only at the last stage 
of eSS and if the unshared set of survivors is not 
enough for the g-TF, the eSS needs to run again with 
the smaller graph. Due to its sequential eSS execution, 
it does not ensure the optimality of scheduling multi-TF 
as in the eSSM. However, the heuristic is practically 
useful and good enough, since the real systems have 
large enough capacity compared to a session bandwidth, 
i.e. K >> g. When with low load, the chance of having 
large m and finding schedules is high, and the algorithm 
converges fast enough. After many sessions, when 
system gets busier, the eSSM can be efficiently applied 
as in 3.2  

 

4.2 Complexity analysis 
Its complexity, based on eSS, is as low as in the 

single TF schedule. The heuristic is quite efficient in 
terms of complexity compared to eSSM, with linear 
complexity in every size. Provided finding all g TFs 
needed for the session after v repetitions, the complexity 
of the heuristic is obviously v times as high as the 
complexity of the eSS [7]: 

  X(h,K,Z,g) = v·(h-1)·K·(Z+1)  where  1 ≤ v ≤ g 

Figure 7 illustrates a simulation-based comparison 
between complexities of the heuristic and eSSM in a 
scenario: h=10, K=20, g=3, Z=10 and at least a schedule 
is found. The complexity of eSSM is 32 thousand times 
as high as the one of the heuristic at load 0% and ~ 230 
times higher at load 65%. 

Conclusively, for this scenario, load of ~70% can be 
a proper threshold to switch between two scheduling 
strategies: eSSM is used if load is higher than 70% and 
heuristic is used otherwise. This provides an 
experimental policy of load thresholds the network 
operator can use to apply suitable algorithms. 

 
Figure 7 – complexity of eSSM vs. Heuristic 

5 Scheduling policy towards packet order 
Although IP networks do not assure that packets 

arrive to the destination in the same order in which they 
were sent, out-of-order packets can cause performance 
problems to many applications and higher layer 
protocols. Moreover, out-of-order packets cause 
additional delay in streaming media and interactive 
media applications, such as HDTV, Teleconferencing, 
Video-on-demand, Distance Learning, Telemedicine. 

eSSM may decide a out-of-ordered schedule where 
TFs go out earlier from Source arrive later at 
Destination. It is because, with the graph and Path 
Filtration in eSSM, the algorithm is blind to the order 
requirement, and just selects schedules based on the 
vertex availability and delay optimizing. As far as we 

Heuristic(g,Z,K,h) 

Initiate: number of remaining schedules: r = g 

1.  Run eSS(Z,K,h), find s survivors at the last 
stage; 

2.  If s < r 
P=Exit, failure: “not enough TF, use less or 
try later”; 

3.    If s ≥ r, Identify a Susp with m = size(Susp)  
4.   If m ≥  r 
    P  (pick r best-delay paths from Susp ); 

Exit, success. P is the schedule list 
5.   If m < r 
     P  Susp ;   r = r – m ; 
6.  If size(P) < g 

 Mark TFs in Susp as busy in the graph; 
    Repeat from step 1 



 

have studied, the exhaustive search is the only 
algorithm that can evaluate all possibilities of in-order 
schedules at the expense of extremely high complexity. 
Thus, in order to trade off among criteria of appropriate 
complexity and efficient search for in-order delivery, 
we have eSSM modified in a way that it consistently 
searches over only ordered schedules. The solution is to 
run eSSM in a graph built up by only vertices that 
satisfy the increasing order of TFs. Thus, all choices of 
the schedule until the Destination have the same 
increasing order, as in the Source. The same eSSM idea 
can then perform on the new graph. Vertices are 
involved in the in-order graph as follows: 
- 0

kV are combinations of g out of K TFs, in which the g 
TFs are sorted in increasing order, e.g. ( )9,5,10 =kV  

- 
h

kV  (h ≠ 0) for the in-order graph are selected from 
the vertices in eSSM graph if they contain TFs in 
increasing order within 2 time cycles. They are 

exactly the 
0

kV  ones plus the cyclic-shift versions of 
0

kV ones, e.g. (2,3,1), (3,1,2). 

6 Discussion 
The exponential-like processing time with huge 
schedule space make scheduling for a multiple TF 
context a complex problem with many open issues. Our 
solution provides method to do that efficiently with 
some heuristics in practical scenarios. It is also a first 
step to further open the FλS network scheduling to 
various areas, e.g.: for a set of diverse session, for 
WDM (multiple channels), or with multicast, For all 
that, our eSSM application continues to looks possible 
with suitable modifications in future works. 
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